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We introduce and define Network Automata, a generalization of Cellular Automata, which relates
the topological evolution of a network to its structure. This framework is capable of replicating
many familiar network models. We also introduce the Functional Dynamic Network framework for
dealing with networks in which the topology evolves according to some specified microscopic rules
and, simultaneously, there is a dynamic process taking place on the network that both depends on
its structure but is also capable of modifying it. As such it is a generic framework for dealing with
the types of systems in which network structure, dynamics, and function are interrelated. At the
practical level, these frameworks allow for easy implementation of the microscopic rules involved in
such systems. To demonstrate the Functional Dynamic Network in action, we develop a class of
simple biologically inspired models of fungal growth.

PACS numbers: 89.75.Fb, 89.75.Fb, 87.18.Bb, 87.80.Vt

I. INTRODUCTION

The framework of complex networks has proved very
successful in the study of various interacting systems. In
the network description, the interacting elements are de-
picted as nodes and the interactions between the elements
are represented by links connecting the corresponding
nodes. The science of complex networks has progressed
very quickly in the last few years, and some excellent re-
views have been written covering both the methodology
and key results [1–3]. The strength of the complex net-
work paradigm lies in its ability to capture some of the
essential structural characteristics of interacting systems
while disregarding the details of both the elements and
their interactions. Consequently, the early complex net-
work literature was almost exclusively focused on struc-
tural properties of networks.

In many out-of-equilibrium growing networks, the evo-
lution at a given time is dependent on the nature of the
network at that time as exemplified in the preferential
attachment model of Barabási and Albert [4]. In this pa-
per, we develop the Network Automata (NA) framework,
which can be seen as a natural extension of the Cellu-
lar Automata (CA) framework [5]. We describe different
variants of NA in Sections II and III which are illustrated
schematically in Fig. 1. To demonstrate the versatility
of NA itself, we show how some familiar network models
can be recast in the NA framework in Section IV. The
NA framework not only removes ambiguity at an imple-
mentation level through exhaustive specification of the
microscopic ruleset employed, it also provides a platform
for comparison between apparently different network al-
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FIG. 1: (Color online) The functional, stochastic and re-
stricted behaviors which can be encompassed by the FDN
and NA frameworks. Also illustrated is the position of the
Barabási-Albert (BA) network growth model, the random at-
tachment (RA) network growth model, the Watts-Strogatz
small world model (WS), the Game of Life cellular automata
(GOL), the biologically inspired models (BIM) introduced in
Section VI and the Self-Organised Criticality model of Fron-
czak, Fronczak and Holyst (FFH) [7].

gorithms.

While structural properties remain important in con-
straining the behavior of the system, there is a growing
interest in dynamical processes taking place on networks
[6]. Consider a situation in which the topology of a net-
work evolves while there is simultaneously some process
taking place on it. While its topology constrains the type
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of dynamics that may unfold on it, the dynamical pro-
cess may be able to modify the topology of the network,
meaning that its structural properties are coupled to its
function. A real-world example might be the growth of
transport links within a city. The dynamics of the hu-
man population within this network in turn affect the
reinforcement and evolution of the those transport links
and the feedback process is apparent.

There have been several clever attempts in the lit-
erature to inter-relate a network’s structure, dynam-
ics, and function – see, for example, the specific Self-
Organised Criticality model of Fronczak, Fronczak and
Holyst (FFN) [7] and the model of Zimmerman et al [8].
However, the present paper distinguishes itself by provid-
ing a generic framework for dealing with these types of
systems. We call this the Functional Dynamic Network
(FDN) framework and introduce it in detail later on in
the paper. Its broad contribution to the network field
lies in the fact that it enables a precise specification of
the microscopic rules underlying the structural and func-
tional evolution of a given network-based system, thereby
enabling comparison between different classes of network.

II. NETWORK AUTOMATA

Consider an arbitrary weighted or unweighted, di-
rected or undirected network at some time t which is to
be grown to some size Ntot. Whilst nodes might be added
to the system at each time step, the network might be
considered as being of size Ntot where at time t many of
the the nodes have no links. Information regarding the
network’s topology is entirely encompassed within the
adjacency matrix A(t) which is of dimension Ntot. The
matrix holds information about which links exist, their
direction and, perhaps, weights. One might consider the
evolution of the network as a process that alters the ele-
ments within this adjacency matrix, updating the states
of the possible Ntot(Ntot − 1)/2 links which could exist
in the system. We base a framework of network growth
around this concept. If the microscopic ruleset govern-
ing the network’s evolution is solely related to quantities
which can be derived from the network’s current topology
(and hence from A(t)) then the evolution of the network
can be expressed in terms of some operation F acting
upon the adjacency matrix:

A(t + 1) = F
(

A(t)
)

. (1)

Thus, the update and consequential evolution of the net-
work is entirely governed by the network itself [16]. Def-

inition: The Network Automaton (NA) is a network
whose microscopic ruleset governing its topological evo-
lution is determined by its own current topology [17].
This ruleset could relate to any property of the nodes
(their degree, betweeness, clustering and so on) or the
links (weights or direction).

This concept is be achieved in practice by visiting all
possible Ntot(Ntot − 1)/2 links within the adjacency ma-

trix A(t) for a network comprising Ntot nodes (whether
part of a component or not) once every time step. The
update as to the nature of the link at the next time step
(its existstence or its weight or direction) is then pre-
scribed by the ruleset [18]. This process is analogous to
the update of the state of a cell within a conventional
Cellular Automaton [9]. To qualify as a Network Au-
tomata, the ruleset can only relate to quantities derived
from A(t). This update then generates A(t + 1). This
link-orientated update is a generic description of a dy-
namic network and all the essential features of that net-
work’s evolution are then contained within the exhaus-
tive ruleset. No restriction has yet been made as to the
directionality or weight of links.

III. RESTRICTED NETWORK AUTOMATA

Having defined Network Automata we shall now ex-
plore a simple example that can encapsulate some famil-
iar Cellular Automata (CA) behavior [9]. We will impose
some constraints such that this example is a small sub-
class of the NA framework. First, we shall look at the
undirected graph with unweighted links such that the
state of a link at time t can be described as the ele-
ment Ai,j(t). The ruleset governing the system’s evolu-
tion determines the state of this link at the next time step
Ai,j(t+1). At the start of the update process, we let the
information that the ruleset can act upon be simply the
current state of the link and the degrees of the two nodes
which it could possibly connect namely ki(t), kj(t). We
impose some simple rules to govern the evolution of the
system, namely, that the state of a link at time t + 1 is
a function of the combined degree of the adjacent nodes
ki(t)+kj(t) at the beginning of the time step and its own
state Ai,j(t).

We now restrict the network to an underlying lattice,
U such that only those links that exist within the un-
derlying structure can be formed in A. Note that the
underlying lattice is undirected such that Ui,j = Ui,j .
For visual clarity, we shall make this an undirected de-
gree 4 lattice with cyclic boundary conditions. Clearly
this construction fulfills the criterion of being a Network
Automaton, but since it is restricted to an underlying
static network U, we call it a Restricted Network Au-
tomaton (RNA) and this is illustrated in the schematic
of Fig. 1. The evolution of the state of a specific link can
be described as some operation

Ai,j(t + 1) = F
(

Ai,j(t), Ui,j ,
∑

j

Ai,j(t) +
∑

i

Ai,j(t)
)

.(2)

As an example of the RNA framework, let us construct
the rules of the game in the nomenclature of the “life-
like” CA models [9]. The survival and birth of a link
is determined according to the value of ki(t) + kj(t).
We can express a ruleset for the survival process of the
link in terms of a number (or a set of numbers) xs

such that if ki(t) + kj(t) = xs and the state of the
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link Ai,j(t) = 1, then Ai,j(t + 1) = 1 and is zero oth-
erwise. Likewise, for link birth, we have a number xb

such that if ki(t) + kj(t) = xb and Ai,j(t) = 0, then
Ai,j(t + 1) = 1. These rules are conventionally expressed
“survival set/birth set”, and denoted as xs/xb. The rules
in this particular example relate the number of neighbor-
ing links to the future existence of a link. For example,
according to rule “3/2” a link will survive if the com-
bined degree of the two nodes it connects is 3 (xs), and a
non-existent link will be “born” if the combined degrees
of the two nodes between which it might exist is 2 (xb).
This ruleset is given explicitly in Table I.

time t time t + 1
ki(t) kj(t) Ai,j(t) Aj,i(t) Ai,j(t + 1) Aj,i(t + 1)

1 1 0 0 Ui,j Ui,j

0 2 0 0 Ui,j Ui,j

2 0 0 0 Ui,j Ui,j

2 1 1 1 1 1
1 2 1 1 1 1

otherwise 0 0

TABLE I: The rules of game 3/2 on an arbitrary underlying
network U. A link will be born if it has 2 neighboring links
and it must have only 1 neighbor to survive.

The top three rows of Table I refer to the birth of
links and the next two refer to link survival. Clearly, if
a link exists then the degree of the nodes at each end
must be greater than zero. As such, the fourth and fifth
lines of Table I cover all eventualities of link survival for
this ruleset. The explicit inclusion of the (symmetric)
underlying matrix U reflects the restricted nature of the
automaton. Naturally, ki(t) and kj(t) can be expressed
in terms of the network’s adjacency matrix A(t) as the
ith and jth element of A(t) 1 where 1 is a vector with
all elements equal to one and of dimension Ntot. More
concisely, in terms of some operation F

A(t + 1) = F
(

A(t),U
)

. (3)

We can now observe the evolution of the automaton on
some initial configurations of A(0) using the rule set 3/2
and underlying lattice of order 4. We can observe “blink-
ers” which are motifs which return to their original posi-
tion after some period. There are also motifs that repli-
cate themselves after a number of steps but are spatially
translated as shown in Fig. 2. These are known as “space-
ships” in the CA nomenclature because they propagate
through the space. There are many other interesting con-
figurations and many rulesets to explore, even with the
order 4 underlying lattice. There are a number of “still
lifes” (objects that remain unchanged), blinkers of long
periods, and “puffers” (debris leaving spaceships) which
have been found [10]. As yet, there are no known “guns”
(objects that replicate like blinkers but emit spaceships
in the process). Implementation on the order 5 lattice
would enable any of the Game of Life type objects to be
emulated within the NA framework [19].

t = 0 t = 1 t = 2

FIG. 2: A simple spaceship of period two in the 3/2 game
with underlying lattice of order 4. Repeated application of
the automaton rules will clearly perpetuate its motion.

IV. STOCHASTIC NETWORK AUTOMATA

We can also use the Network Automata framework
to construct more conventional evolving networks. To
do this we augment the NA framework, which consists
of purely deterministic rules, by adding one or more
stochastic rules and, thus, arrive at Stochastic Network
Automata (SNA) as illustrated in Fig. 1. To implement
SNA, we need two additional definitions. We denote the
outcome of a Bernoulli trial with ω(x) defined as

{

P (ω(x) = 0) = 1 − x
P (ω(x) = 1) = x.

We also define the Heaviside-like step function φ(x) as

φ(x) =

{

1 if x > 0
0 if x ≤ 0.

(4)

Note that SNA can be restricted to a fixed underlying
lattice (network) U, resulting in Restricted Stochastic
Network Automata (RSNA). We follow this approach in
developing the biologically inspired model in Section VI,
but emphasize that in this section there is no constraining
underlying lattice structure imposed.

A. Random attachment model

The random attachment algorithm for building a single
component network is very straightforward [12]. We con-
sider a simple case in which at each time step a new node
is connected to the existing network with one undirected
link. Growing networks such as this one are known as
non-equilibrium networks to distinguish them from equi-
librium networks in which the number of nodes is con-
stant [12]. The node in the existing network to which the
new node is to be connected is chosen at random. The
process is repeated until the required number of nodes
is connected to the network. The conventional analysis
for such a process is based on master equations [12]. Let
there be N(t) nodes at time t in the connected compo-
nent of the network of which Xk(t) are of degree k. For
k > 1, the evolution of Xk can be written in terms of the
probabilities of the new node connecting either to a node
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degree k−1, thereby increasing Xk, or connecting to a k
degree node, thereby reducing it. This can be written as

Xk(t + 1) = Xk(t) +
Xk−1(t)

N(t)
−

Xk(t)

N(t)
. (5)

For k = 1, the new node (being of degree 1) will always
increase X1(t + 1), but through connecting to a degree 1
node in the existing network, it can decrease it too, such
that

X1(t + 1) = X1(t) −
X1(t)

N(t)
+ 1. (6)

We make a steady state approximation by assuming
that the fraction of degree k nodes remains constant in
time such that Xk(t) = ckN(t) ≈ ckt, implying that
Xk(t + 1) − Xk(t) ≈ ck. It is interesting to note that
the justification for treating the discrete process in this
continuous manner is based on the assumption that, on
average, one new node is connected to the network per
time step with one undirected edge. The recurrence rela-
tion for the degree distribution of the system can be now
written as

ck =
ck−1

2
c1 =

1

2
, (7)

which yields the degree distribution P (k) = ck = 2−k.
Next we will emulate this process in the SNA frame-

work. Suppose we wish to grow the network to Ntot

nodes, so that the adjacency matrix is of dimension Ntot.
At each time step, we consider the update of all possible
links in the network but only wish to update the links
from nodes within the connected network component to
nodes outside of it. Consequently, there are a total of
N(t)(Ntot − N(t)) links that may be added, of which
we wish that, on average, only one link will be added.
Having identified those links which may be added, the
required probability associated with one of them being
added is P (t) = [N(t)(Ntot − N(t)]

−1
.

time t time t + 1
Ai,j(t) Aj,i(t) φ(ki(t)) φ(kj(t)) Ai,j(t + 1) Aj,i(t + 1)

0 0 0 0 0 0
0 0 0 1 ω(P (t)) Ai,j(t + 1)
0 0 1 0 ω(P (t)) Ai,j(t + 1)
0 0 1 1 0 0
1 1 1 1 1 1

TABLE II: The stochastic rules to replicate random attach-
ment network growth. The resulting distribution is shown in
Fig. 3.

The explicit rules for this particular SNA which repli-
cates random attachment are expressed in Table II. They
state that the link can only be born if the node i is al-
ready part of the component and node j is not in the
component (or vice-versa) and ω(P (t)) = 1. If the link
already exists, it stays. We seed the automaton with ini-
tial configuration of A1,2(0) = A2,1(0) = 1 reflecting a

single component of 2 nodes. All links are only consid-
ered once in the update stage and both Ai,j(t + 1) and
Aj,i(t+1) are simultaneously updated [20]. The compar-
ison of the degree distribution of the network generated
by the SNA to that of the master equation analysis is
shown in Fig. 3.
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0

degree k
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)

BA Network Automaton
BA Master Equation
RA Network Automaton
RA Master Equation

FIG. 3: (Color online) The resulting degree distributions
P (k) for the random attachment (RA) model and the pref-
erential attachment (BA) model. The analytical results ob-
tained using the master equation approach for these models
are P (k) = 2−k and P (k) = 2m(m + 1)/ [k(k + 1)(k + 2)] re-
spectively [1], with here m = 1. These are plotted with lines.
Superimposed, are the corresponding distributions for one re-
alization of the SNA, grown to only 10, 000 nodes. Clearly
the two approaches are consistent.

It is clear from the binomial process governing the ad-
dition of new links (and nodes) to the existing compo-
nent of the network that, on average, one new link and
one new node are added, although clearly more than one
new node could be attached with more than one new link
allowing loops to be formed.

B. Barabási-Albert model

The SNA framework can also emulate a preferential
attachment model such as that by Barabási and Albert
[4]. In the BA-model the probability for a new node to
attach to an existing node is proportional to the degree
of the existing node, i.e., the attachment probability is
a linear function of the node degree. This attachment
mechanism is achieved in the SNA framework by simply
modifying the probability of link birth, and the ruleset
for this process is presented in Table III, where K(t) =
∑

i ki(t) denotes the sum of degrees over all nodes in the
network.

The analytical result obtained using the master
equation approach is given by P (k) = 2m(m +
1)/ [k(k + 1)(k + 2)] where m is the (fixed) degree of the
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time t time t + 1
Ai,j(t) Aj,i(t) φ(ki(t)) φ(kj(t)) Ai,j(t + 1) Aj,i(t + 1)

0 0 0 0 0 0

0 0 0 1 ω
(

kj(t)

K(t)(Ntot−N(t))

)

Ai,j(t + 1)

0 0 1 0 ω
(

ki(t)
K(t)(Ntot−N(t))

)

Ai,j(t + 1)

0 0 1 1 0 0
1 1 1 1 1 1

TABLE III: The stochastic ruleset needed to replicate prefer-
ential attachment network growth. A small simulation distri-
bution is shown in Fig 3.

new node entering the network [1]. Asymptotically this
leads to P (k) ∼ kγ with γ = 3. The analytically obtained
distribution is plotted in Fig. 3 together with the corre-
sponding distribution obtained from one realization of an
SNA simulation. The match between the two approaches
is very good.

C. Watts-Strogatz model

FIG. 4: The initial network configuration of the Watts Stro-
gatz model for k = 4.

We have demonstrated how non-equilibrium growing
networks can be generated within the SNA framework.
Here we turn to equilibrium networks and discuss the
rules necessary to generate small world networks in the
manner of Watts and Strogatz [13]. The WS model
starts from considering a one-dimensional lattice com-
prising N nodes with all nodes having the same de-
gree k (through connections to nearest neighbors, then
next nearest neighbors etc) and cyclic boundary condi-
tions [21]. An initial configuration for k = 4 is shown in
Fig. 4, as an example. Each link in the network is visited
and it is rewired with probability p. The original rewiring
mechanism was such that one end of the link remained
where it was and the other vertex was chosen at random
from the rest of the network. In practise, the addition
of shortcuts is the important aspect of this model so we
choose a slightly simpler mechanism such that both ends
of the rewired link are chosen at random. We aim to em-
ulate this modified process within the SNA framework
because it results in somewhat simpler ruleset than the
original model.

Initially, there are Nk/2 links within the system. The
expected number which are to be rewired is pNk/2. This
process might be considered “link death”. The number of
nodes remains constant, and we wish the number of links
to remain constant too. The expected number of links
to be born is therefore set equal to the expected number
of links which are removed. This is consistent with the
notion of link rewiring in the model of Watts and Stro-
gatz although we note that the number of links removed
and those added are not necessarily equal. Assuming no
loops of length one (melons) such that Ai,i = 0, the to-
tal number of links in the system that are not alive (and
therefore capable of being born) is

N(N − 1)

2
−

Nk

2
. (8)

We can then describe the time-independent birth proba-
bility of links by

P (t) = pb =
kp

(N − k − 1)
. (9)

The ruleset for this system, which is is given in terms
of the link removal probability p and the link birth prob-
ability pb, is shown in Table IV. In an actual implemen-
tation of the model, one runs through all possible links,
whether they exist or not, and updates their state ac-
cording to the rules. The result of applying this ruleset
is shown in Fig. 5, depicting the normalised clustering
coefficient and mean shortest path for the networks gen-
erated. It is interesting to note that this implementation
of the SNA requires only one time step. Successive appli-
cations yield networks comparable to the classic random
graphs of Erdös and Rényi [11] in that all links will even-
tually be rewired and replaced randomly.

time t = 0 time t = 1
Ai,j(0) Aj,i(0) Ai,j(1) Aj,i(1)

1 1 1 − ω(p) Ai,j(1)
0 0 ω(pb) Ai,j(1)

TABLE IV: The simple stochastic ruleset for replication of
the Watts and Strogatz small world network model. The top
row represents the removal of a link with probability p and the
bottom, the rewiring of a link with probability pb as defined in
equation 9. The network is undirected, yielding a symmetric
adjacency matrix A.

V. FUNCTIONAL DYNAMIC NETWORK

FRAMEWORK

Consider a situation in which the topology of a network
evolves while there is simultaneously some process taking
place on the network. At any given time the topology of
the network constrains the type of dynamics that may
unfold on it. However, the dynamical process may be
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FIG. 5: (Color online) The normalised clustering coefficient
and average shortest path of the networks generated using
the Watts and Strogatz small-world mechanism implemented
in the Network Automata framework. Here, k = 10 and
N = 400. Each marker represents a simulated network, with
the line being the mean values over 100 simulations. The
normalising coefficients C(0) and l(0) are the clustering coef-
ficient and average shortest path of the network prior to any
rewiring.

able to modify the topology of the network, meaning that
its structural properties are coupled to its function and
vica-versa. A related real-world example is the growth
of a city, where more affluent, well-connected areas are
more prone to further expansion. A similar situation
may arise in the context of social networks, where one’s
current social opportunities and dynamics are limited by
the existing network structure, but they can be widened
by extending the network.

The ruleset governing the topologival update process
relates not only to network related quantities but also
functional aspects of the nodes and/or links. This leads
to the definition of the Funcitonal Dynamic Network.
Definition: A Functional Dynamic Network (FDN) is
a network whose topological evolution is governed by a
funtional process taking place upon the network as well
as its own current topology. Clearly, Network Automata
are a subclass of the FDN as illustrated in the schematic
of Fig. 1.

Since the functional process requires a network on
which to perform, we can decouple the evolution of the
network into two distinct phases, namely, that affecting
its topology and that governing the functional process.
Writing the functional information at some time t as a
matrix S(t), the formal description of the evolution can
be expressed in terms of some operators F and G as

A(t + 1) = F
(

A(t),S(t)
)

S(t + 1) = G
(

A(t + 1),S(t)
)

. (10)

This expression states that the network evolves accord-

ing to some process, which is determined by its own cur-
rent topology A(t), and also by some attributes of its
nodes and links that includes function-based information
S(t) [22]. The functional process then occurs on this net-
work to generate the new set of information S(t+1). The
system is synchronously updated by running through all
possible links between all pairs of nodes and updating the
state of each link in accordance to the ruleset employed.

VI. BIOLOGICALLY INSPIRED MODEL

In this Section we construct three simple increasingly
realistic models of woodland fungi [14] to demonstrate
the versatility of the Functional Dynamic Network frame-
work. To model the growth of the fungi and distri-
bution of resources within it requires pooling together
concepts from both the Restricted Network Automata
(Section III) and the Stochastic Network Automata (Sec-
tion IV). Although the model is biologically inspired, its
aim is not to incorporate a large number biological de-
tails. Instead, we adopt a minimalist approach to emu-
late fungal growth from a small set of microscopic rules.
We start from a biologically naive but mathematically
simple model (Model a). We then modify the model ac-
cording to some basic physical and biological considera-
tions (Model b). The end product (Model c) of fungal
growth, may serve as a platform for more elaborate fu-
ture models, demonstrating the effectiveness of using the
framework.

Resource Layer

Agent Layer

R
E

R
E

FIG. 6: (Color online) A biologically inspired multi-agent
model whereby the agent layer is superimposed upon a re-
source layer. Agents above a resource can accumulate re-
sources at some rate RE

Consider a system of agents who might each be inter-
preted as a cell in a two dimensional lattice. The connec-
tivity between agents is North, South, East and West re-
flecting a possible connectivity of 4, such that the agents
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are restricted to local information as long range commu-
nication is assumed implausible in the biological system.
The agent layer is superimposed on a resource layer as
in Fig. 6. The rules of the system are very simple. If an
agent is above a resource, it absorbs that resource at some
rate RE . The objective of each agent is two-fold: (1)
become fully connected, and (2) redistribute excess re-
source. The process of becoming fully connected reflects
growth into a neighboring cell. We allow each agent to
grow only one new neighbor at a time step but only if the
agent has resources to do so. To mimic active transport
of resources, an agent passes resources to its neighbor cell
provided that the neighbor does not pass resources to it.
We now endeavor to categorize this simple multi-agent
system it in the FDN framework. This serves not only
to clarify any ambiguities that arise in the programming
of a multi-agent system, but also as a potential aid to
improving efficiency in that the required iteration and
information storage/retrieval aspects are clearly defined
by the rulesets imposed.

We start from a simple scenario (Model a) in which
resources are neither consumed nor conserved. Let us
first look at the growth (structural) stage. Each cell or
agent represents a node and the boundary between two
cells through which resource is passed is represented by a
link, requiring a directed implementation of the RSNA.
Consider that the information upon which the topological
ruleset will act to update the state of a link in the network
is simply the amount of resource that each of the two
nodes has at each end of the link and their in and out de-
gree. For clarity, instead of writing them in matrix form,
we write them as distinct vectors such that Si(t) refers to
the resource (functional variable) that agent (node) i has
at time t. The element ki(t) is its total degree and ko,i(t)
its out degree. The information available to the ruleset
can be considered vectors of some dimension Ntot where
Ntot is the number of nodes in the underlying lattice U

that we take to be of order d = 4.

We will grow the FDN in an unweighted but directed
adjacency matrix A such that if Ai,j = 1 the link exists
and is directed from i to j, whereas if Aj,i = 1 the link
exists and is directed from j to i. If neither Ai,j = 1 nor
Aj,i = 1 then the link does not exist. Here Ai,j = 1 and
Aj,i = 1 are mutually exclusive. The structural update
process runs though all links by considering all nodes
i = 1 → Ntot and for each value i through all possible
neighbors j = 1 → i where Ui,j = 1. As such, each
possible link between nodes i and j is considered once
and the information Ai,j and Aj,i regarding its state and
direction is updated at the same time.

We can now write the network update procedure for
Model a in terms of an exhaustive truth table as in Ta-
ble V. Note that if Ai,j(t) = Aj,i(t) = 0, the total degree
of both nodes i and j is less than d. Also, the depen-
dence on the underlying lattice is implicit and, as such,
its cumbersome presence will not be explicitly included
in the ruleset.

The resource distribution (functional) stage is slightly

more straightforward. We start by mapping the adja-
cency matrix A(t + 1) to a normalised transition matrix
T(t + 1) such that an element Ti,j(t + 1) = Ai,j(t +
1)/ko,i(t + 1) for out degree of node i greater than zero
at time t + 1.

We can write the update for the resource distribution
process as

S(t + 1) = T
†(t + 1)S(t) + ξ(t), (11)

where the vector ξ corresponds to agents who can accu-
mulate resources. If we wish to impose the constraint
that only “alive” (i.e. active) agents can accumulate re-
source through this process, then we write

ξi(t) = RE φ(Si(t)) Li (12)

where the vector L denotes the (binary) existence of re-
source at position of node (agent) i in the resource layer.
This could be made time dependent (i.e. finite size re-
sources) although here we will not consider this effect.
For the example of Fig. 7, the amount of resources that

q

j i

m

r

FIG. 7: The influx of resource into node labelled i. The
amount this node receives from node j is related to how many
out degrees node j has. This amount would be expressed as
Sj(t)/ko,j(t + 1).

node i has at time t + 1 is

Si(t + 1) = Aj,i(t + 1)
Sj(t)

ko,j(t + 1)
+ Am,i(t + 1)

Sm(t)

ko,m(t + 1)

+Ar,i(t + 1)
Sr(t)

ko,r(t + 1)
+ Aq,i(t + 1)

Sq(t)

ko,q(t + 1)

= Tj,i(t + 1)Sj(t) + Tr,i(t + 1)Sr(t)

+ Tq,i(t + 1)Sq(t). (13)

We can now observe the FDN in operation as shown
in Fig. 8. Let us start with a single node η above a single
food source such that at time t = 0 the agent has some re-
source. In the initial configuration the adjacency matrix
is all zeros Ai,j(0) = 0 ∀i, j, and the resource information
vector is all zeros except Sη(0) = RE such that the initial
agent has amount RE . The (static) resource accumulat-
ing vector ξ(t) is also all zeros except ξη(t) = RE ∀ t.
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Model a Model b Model c

time t time t + 1 time t + 1 time t + 1
Ai,j(t) Aj,i(t) φ(Si(t)) φ(Sj(t)) Ai,j(t + 1) Aj,i(t + 1) Ai,j(t + 1) Aj,i(t + 1) Ai,j(t + 1) Aj,i(t + 1)

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 ω
(

1
d−kj(t)

)

0 ω
(

1
d−kj(t)

)

0 ω
(

g

d−kj(t)

)

0 0 1 0 ω
(

1
d−ki(t)

)

0 ω
(

1
d−ki(t)

)

0 ω
(

g

d−ki(t)

)

0

0 0 1 1 ω
(

1
2

)

1 − Ai,j(t + 1) ω
(

1
2

)

1 − Ai,j(t + 1) ω
(

1
2

)

1 − Ai,j(t + 1)
0 1 0 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 0 1 0 1
0 1 1 1 0 1 δ(kin,i, d)ω

(

1
d

)

1 − Ai,j(t + 1) δ(kin,i, d)ω
(

1
d

)

1 − Ai,j(t + 1)
1 0 0 0 1 0 1 0 1 0
1 0 0 1 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0
1 0 1 1 1 0 1 − Aj,i(t + 1) δ(kin,i, d)ω

(

1
d

)

1 − Aj,i(t + 1) δ(kin,i, d)ω
(

1
d

)

TABLE V: Different rulesets (the columns labeled ‘time t + 1’) for three biologically inspired models: (a) the simplest scenario
(Model a), (b) incorporating conservation of resources (Model b), and (c) implementing a delay factor (Model c). See Eq. A2
for the definition of δ and Appendix A for details.

We observe both the network and functional aspect of
the system. The nodes (agents) are superimposed on the
directed network, and the amount of resources a node
has is indicated by its color ranging from blue (low con-
centration) to dark red (high concentration) [10]. Only
nodes that have resources are included and the result is
independent of the choice of RE .

Note that under this ruleset and functional update
stage resources are not conserved. As such, if an agent
has no daughters, the resources held by the agent are
“lost” in the functional update stage of the process. How-
ever, conservation and consumption of resources can also
be incorporated by making further modifications to the
functional update stage to construct Model b, a slightly
more developed model. The details of these modifications
are given in Appendix A and an example of the evolution
is shown in Fig. 9. Emergent canalized flux channels are
clear. Such channels have been observed experimentally
in a wide class of real biological fungi [14].

A further development can be made to incorporate two
different time scales in the model such that the growth
and redistribution of resources take place at different
rates, leading to Model c (see Appendix A for details).
The ruleset of each progressively more detailed model is
based on that of its predecessor as seen in Table V.

VII. CONCLUDING REMARKS AND

DISCUSSION

In this paper we have developed the concepts of Net-
work Automata (NA) together with its restricted (RNA)
and stochastic (SNA) variants. This generic framework
can encompass many familiar models. We have demon-
strated its ability to reproduce Cellular Automata type
models in Section III, and also non-equilibrium growing
network models (random attachment, Barabási-Albert)

t = 0 t = 2

t = 4 t = 6

FIG. 8: (Color online) The evolution of the biologically in-
spired FDN. The colors represent the amount of resource Si(t)
a node has (the functional aspect) superimposed on a directed
network (the structural aspect).

and equilibrium (Watts-Strogatz) network models in Sec-
tion IV. Whilst these pedagogical cases have comprised
undirected, unweighted networks, these features can be
incorporated within the framework.

The development of NA naturally leads to the in-
troduction of the Functional Dynamic Network (FDN)
framework, the main contribution of this paper, which
couples evolution and function of complex networks by
using simple microscopic rules at the level of nodes and
links. We have demonstrated the practicability of the
FDN framework by applying it to a class of biologi-
cally inspired models, which produce qualitatively similar
structure to woodland fungi. The well defined and sim-
ple ruleset not only makes replication possible but also
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FIG. 9: (Color online) Incorporating conservation and con-
sumption of resources. The simulation is seeded with one
resource, one agent, RE = 20, 000, RC = 1 and after 500 time
steps there are 15, 984 agents. The simulation used the rule-
set of Model b of Table V, and the functional update is that
of Eqs. A1, A3, A4. The lattice is of length 300.

aids implementation at the programming level. In the
study of emergent phenomena involving networks, this
framework enables concise and clear establishment of mi-
croscopic rules. One can easily think of more complex
rulesets to more accurately model a real system, such as
adding transport costs or finite resources, both of which
can easily be accomplished, or even a time-dependent
ruleset. In related biological systems the observations
are usually restricted to the functional part of the net-
work, as might be obtained by radioactive labeling of
food sources. In designing models for such systems it
seems sensible to retain this functional information not
only because that function might be inherent to its de-
velopment but also for comparative purposes. It is then
interesting to ask what level of complexity is required to
more accurately model real biological systems.

One can envisage applying the FDN framework also
to discrete differential equation modelling and Diffusion
Limited Aggregation (DLA) systems and, indeed, to any
system in which the dynamics of network topology is
related to the function performed thereon. There are
certain biological systems which can quasi-solve increas-
ingly complex problems in a constant time [15]. Given
that it might be possible to model these systems within
the FDN framework, it might suggest how to design a
hardware based implementation to perform the similar
calculations in constant time. It is interesting to pose
the question as to what kind of problems could be solved
by such a system and how complex the microscopic rules

would be for a given problem. This would reflect the min-
imum length of ruleset that would have to be employed
by such a system in both the network and functional up-
date stages. The physical replication into a digit system,
and the length of the information processes thereon, al-
ludes to a measure for the complexity of the system.

APPENDIX A: CONSERVATION AND

CONSUMPTION OF RESOURCES

We can incorporate conservation of resources in the
model by modifying the update stage of the functional
process. This requires rewriting the transition matrix as

Tt+1(i, j) =

{

At+1(i,j)
ko,i(t+1) for ko,i(t + 1) > 0

0 for ko,i(t + 1) = 0

Tt+1(i, i) =

{

0 for ko,i(t + 1) > 0
1 for ko,i(t + 1) = 0.

(A1)

Note that the above modification allows an agent to ac-
cumulate resource indefinitely if its in-degree is equal to
the degree of the underlying lattice, i.e. ki(t) = d. This
undesirable feature can be overcome by having this agent
flip the direction of, on average, one of its d links. To im-
plement this we make use of the Kronecker delta function
defined as

δ(x, y) =

{

0 for x 6= y
1 for x = y.

(A2)

We can also incorporate consumption of resources in
the model by making further modifications to the func-
tional update stage, resulting in Model b. If an agent
has more than some residual consumption amount, then
RC , the rate of consumption, is deducted from it. If the
agent has less than this value, all of that agent’s resources
are removed such that the agent might be considered
dead. The agent now distributes resources according to
the number of its out-links if it has any, or retains its
resources if it has none according to

S′(t + 1) = T
†(t + 1)S(t), (A3)

where S′ is the resource of every node prior to consump-
tion. The transition matrix is as defined in Eq. A1. We
can then write the update for S as

Si(t + 1) = φ(S′
i(t + 1) − RC)(S′

i(t + 1) − RC)

+ RE φ(Si(t)) Li, (A4)

which makes use of the step function of Eq. 4. Only
agents (nodes) active in the network can accumulate re-
sources from the resource layer. The effect of this “cost”
of living clearly limits the potential size of the system.

In previous models, the physical transport of nutrient
is of comparable speed to that of the growth, which is
clearly not reasonable for most biological systems. To
introduce two different time scales in the model, we can
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delay the growth process by introducing a parameter g
to the stochastic growth terms in the ruleset, such that
an agent grows on average one neighbor every 1/g time
steps. This is depicted explicitly in the ruleset of Model

c of Table V, specifically in rules 1 and 2. The result
of such a delay is the build up of resource towards the
periphery of the object as one might expect (not shown).

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys 74, 47
(2002).

[2] M.E.J. Newman, SIAM Rev. 45, 167 (2003).
[3] S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys. 51,

1079 (2002).
[4] A.L. Barabási and R. Albert, Science 286, 509 (1999).
[5] S. Wolfram, A New Kind of Science (Wolfram Media,

2002).
[6] A.E. Motter, M.A. Matas, J. Kurths, and E. Ott (Eds.),

Physica D 224, 1 (2006).
[7] P. Fonczak, A. Fronczak and J.A. Holyst, Phys. Rev. E

73, 046117 (2006).
[8] M.G. Zimmerman, V.M. Eguilez and M San Miguel,

Phys. Rev. E 69, 065102(R) (2004).
[9] J. von Neumann and A. W. Burks, Theory of Self-

reproducing Automata (University of Illinois Press, Ur-
bana, 1966).

[10] See http://www.physics.ox.ac.uk/users/smithdmd/FDN.pdf
for details and examples.
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